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Abstract 41 

The early detection of mental disorders in adolescents represents a significant global 42 

public health challenge. Due to the complex and subtle nature of mental disorders, 43 

making it difficult to detect abnormalities using a single factor. Additionally, the 44 

generalized multimodal Computer-Aided Screening (CAS) systems, incorporating 45 

interactive robots for adolescent mental health assessment, remain unavailable. In this 46 

study, we present an Android application equipped with mini-games and chat recording, 47 

deployed in a portable robot, to screen 3,783 middle school students. This system 48 

generates a multimodal screening dataset comprising facial images, physiological 49 

signals, voice recordings, and textual transcripts. We develop a model called GAME 50 

(Generalized Model with Attention and Multimodal EmbraceNet) with novel attention 51 

mechanism that integrates cross-modal features into the model. GAME evaluates 52 

adolescent mental conditions with high accuracy (73.34% – 92.77%) and F1-Score 53 

(71.32% – 91.06%) and outperforms traditional methods. Our findings reveal that each 54 

modality contributes dynamically to mental disorder detection and the identification of 55 

comorbidities across various disorders, supporting the feasibility of an explainable 56 

model. This study provides a system capable of acquiring multimodal information and 57 

constructs a generalized multimodal integration algorithm with novel attention 58 

mechanisms for the early screening of adolescent mental disorders. 59 

 60 

Keywords: Adolescent mental disorder, Mental health screening, Interactive multi-61 

sensor robot, Multimodal learning, Human-Computer interaction, Computer-aided 62 

screening. 63 

 64 

 65 

Main 66 

Adolescence is a crucial period of life development during which significant 67 

psychosocial adjustments takes place. A large percentage of mental health disorders that 68 

progress into adulthood exhibit symptoms at a young age1,2, indicating that adolescent 69 

mental health issues could degenerate into worse later-life illnesses. Approximately 13% 70 

of adolescents aged 10–19 in the world are diagnosed with different types of mental 71 

illness, of which 80 million adolescents aged 10–14 and 86 million adolescents aged 72 

15–19 are deeply affected by mental disorders3,4. Unfortunately, ~80% adolescents are 73 

unable to receive precise and professional psychological counseling when they demand 74 

mental health services5 and ~50% adolescents with mental disorders have access to 75 

psychotherapy6. Traditional screening methods for mental disorders include 76 

questionnaires and interviews7, where the results rely on patients’ self-reports and 77 

psychiatrists’ observations8,9. However, these methods are inherently susceptible to 78 

subjective bias. Furthermore, barriers like stigma in disclosing mental illness or 79 

negative attitudes towards professionals10 lead to inaccurate psychological assessments 80 

and a vicious cycle of disease deterioration. To address these limitations, interactive 81 

robots providing an enjoyable and acceptable interface with less defensive altitude and 82 

hostility offer a promising avenue for unconscious screening11. The humanoid robot is 83 

more accurate at detecting pediatric mental health problems than parental or child self-84 



reporting12. Therefore, imperceptible and interactive screening robot with 85 

corresponding algorithm for accurate and opportune screening to adolescent mental 86 

disorders can support healthcare agencies and ameliorate the social burden13,14.  87 

Here, we develop a humanoid robot equipped with well-designed emotional stimuli 88 

that facilitates the acquisition of the Multimodal Adolescent Psychological Screening 89 

(MAPS) dataset (age 12–15), including facial images, physiological indicators, audio 90 

recordings, and textual transcripts (Fig. 1). The acquired multimodal dataset is analyzed 91 

with statistical model to minimize the distance between prediction and ground-truth 92 

provided by screening questionnaires. The Mental Health Inventory of Middle School 93 

Students (MMHI-60)15,16 is a screening questionnaire specially designed to assess 94 

Chinese adolescents’ mental health and has exhibited high specificity and sensitivity in 95 

screening 10 different types of mental disorders (Supplementary Methods). We 96 

maintain MMHI-60 questionnaire to screen 10 types of mental disorders with additional 97 

screening results suggested by experienced psychologists for suicidal tendency. Thus, 98 

a total of 12 psychological conditions are labeled as ground truth for individual subject 99 

in the dataset, including: (1) depression, (2) interpersonal sensitivity, (3) anxiety, (4) 100 

obsessive-compulsive tendencies, (5) paranoid ideation, (6) hostility, (7) academic 101 

stress, (8) maladaptation, (9) emotional disturbance, (10) psychological imbalance, (11) 102 

suicidal tendency, and (12) overall mental health status17. 103 

Robotic platforms with human-computer interaction have been utilized for 104 

intervention in adolescent mental health18-20. However, existing systems lack a 105 

computer-aided screening (CAS) algorithm for psychometrics, The CAS approach has 106 

shown promise in diagnosing of mental disorders in adolescents21,22, which can process 107 

different types of input data (e.g., physical activity, sociability, device usage patterns, 108 

etc.) collected from various sensors23 are utilized to recognize specific mental disorders 109 

including depression, anxiety, and stress24-29. However, current CAS models employing 110 

single-modal feature encounter limitations in constructing a comprehensive 111 

representation of the latent multimodal feature space30, which weakens their 112 

performance. Multimodal CAS models have been used to predict psychological 113 

disorders and mental states by feature importance ranking, feature selection, and feature 114 

concatenation strategies31-34. Nevertheless, the screening of specific psychiatric 115 

disorders and the lack of interpretability of these models have hindered the adoption of 116 

CAS models in clinical applications. Limited exploration exists on whether a 117 

generalized model with interpretability could accurately screen adolescents' mental 118 

disorders. Therefore, achieving both generalization and interpretability in the CAS 119 

system remains a challenge for clinical utility. 120 

 121 



 122 

Figure 1. MAPS data acquisition and database construction. a, The flowchart of data acquisition. 123 

A humanoid robot with a customer-designed Android application that can interact with participants 124 

is used for data collection. The data collection procedure has three consecutive sections: 125 

psychological screening, emotional stimuli games, and questions-and-answers. The mental health 126 

inventory is designed by psychological expert as labels of ground truth. Using remote photo-127 

plethysmography (rPPG) and available processing algorithm, key frames (i.e., images with clear 128 

and unmasked face) and physiological indicators are extracted from videos captured during the 129 

games and questions-and-answers sections. The responses in the questions-and-answers sections are 130 

recorded and converted into text using the speech recognition technique of Iflyrec 131 

(https://www.iflyrec.com), supplied by iFlytek. b, the sample distributions for 11 types of screened 132 

mental disorders and overall mental health status. The ratios depict the imbalance of the MAPS 133 

dataset, and the positive samples labeled as ‘Overall mental health status’ represent the abnormal 134 

adolescents. 135 

 136 

Hence, we propose GAME (Generalized model with Attention and Multimodal 137 

EmbraceNet), a generalized model based on distance-weighted attention mechanisms 138 

and multimodal feature fusion in the EmbraceNet backbone network35 (Fig. 2) for 139 

https://www.iflyrec.com/


adolescent mental disorders screening. GAME extracts eight single-modal features 140 

named Expression, Expression nuance, and Eye movement from face images; 141 

Physiological signs; MFCC and Wav2vec from audio recordings; PERT and RoBERTa 142 

from textual transcripts, respectively. Inspired by the diagnostic strategies employed by 143 

psychologists during structured diagnostic and screening interviews with adolescents36, 144 

we propose a novel attention mechanism for multi-scale feature to integrate inter-model 145 

correlation weights and eight single-modal features. Additionally, we introduce cross-146 

modal features named Relation graph and Attention, which play a crucial role in extract 147 

deeper information and alleviate the interference of noisy features. Hyper-Emotion 148 

theory37,38 indicates that adolescents suffered from mental disorders have abnormal 149 

multimodal emotional and behavioral responses to the same interactive stimuli in 150 

contrast to healthy subjects. GAME, guided by the Hyper-Emotion theory, accurately 151 

predicts overall mental health status and identifies 11 types of adolescent mental 152 

disorders based on multimodal responses. We harness GAME's capabilities to predict 153 

comorbidities among adolescents with multiple mental disorders and compare the 154 

findings with relevant studies. The ablation experiment that involve the stepwise 155 

removal of individual modal inputs and fusion analyses to evaluate contribution ratio 156 

of each model from trained GAME. These experiments collectively affirm the 157 

significance of modal features and the robustness of multimodal fusion within our 158 

framework. 159 

In summary, this study develops a cost-effective and highly precise screening robot 160 

platform along with GAME to screen early mental illness among adolescents. The 161 

development of a practical and adolescent-friendly mental health screening system, 162 

tailored to adolescents and capable of delivering accurate and interpretable results, 163 

holds significant promise for the integration of CAS systems within clinical contexts. 164 

The theory-consistent comorbidity prediction underscores the GAME’s reliability for 165 

predicting comorbidity from data-driven perspective. GAME excels in identifies the 166 

dominated features for certain mental disorder and provides valuable guidance in the 167 

design of screening protocols, especially when dealing with single-modal data. This 168 

guidance recommends the clinician prioritizes critical features and directs researchers 169 

towards uncovering implicit patterns or theories through a data perspective.  170 

 171 



 172 

Figure 2. Pipeline of data processing and GAME’s structure. A total of 3,787 people participated 173 

in the mental health screening, retaining 968 samples after exclusion. Based on four types of input, 174 

GAME has been trained to predict mental disorders, mining comorbidity and correlation between 175 

multimodal features and mental disorders in adolescent. MediaPipe, Mel-176 

Frequency Cepstrum Coefficients (MFCC), Wav2vec2.0, Tsfresh module, pre-trained language 177 

models including Robustly Optimized BERT approach (RoBERTa), Pre-178 

training BERT with Permuted Language Model (PERT) are used to extract single-modal features 179 

from facial images, voice recording, physiological indicators, and textual transcripts respectively. 180 

The extracted features undergo task-level fusion, and then two cross-modal features are generated 181 

through unimodal features. Eight single-modal and two cross-modal features are fused by 182 

EmbraceNet. BERT means Bidirectional Encoder Representations from Transformers.  183 

 184 

Results 185 

Multimodal database construction 186 

We construct MAPS dataset with 3,787 Chinese middle school students aged 12 to 15 187 

and filter to 968 (Fig. 2 and Supplementary Method). This dataset spans across four 188 

distinct data modalities, encapsulating a spectrum of 11 mental disorders and overall 189 

mental health status. The 12 mental health conditions in the dataset have different 190 

distribution and the imbalanced positive-to-negative ratios (Fig. 1b), which are ranked 191 

from high to low as follows: obsessive-compulsive tendencies (6.56), interpersonal 192 

sensitivity (5.31), overall mental health status (4.90), academic stress (4.87), hostility 193 

(4.53), psychological imbalance (4.09), suicidal tendency (2.71), depression (2.44), 194 

emotional disturbance (2.25), anxiety (2.21), maladaptation (1.66), paranoid ideation 195 

(1.64). The subjects are hailing from diverse multi-centers and cities within Guangdong 196 



Province China. The MAPS dataset collects comprehensive features via portable 197 

screening platform compared to the public mental disorder dataset. The IMAGEN 198 

study39 and the Adolescent Brain Cognitive Development Study (ABCD)40 are large 199 

multimodal adolescent mental health datasets, which encompass diverse modalities 200 

such as MRI neuroimaging and behavioral assessments. There are also private clinical 201 

datasets that have been used to train AI models for the diagnosis of specific adolescent 202 

psychiatric disorders. However, the current datasets are not compatible with portable 203 

screening for mental disorders due to data privacy, high cost constraints and intricate 204 

data acquisition processes. MAPS uses a readily accessible and inexpensive data 205 

collection platform, facilitating seamless scalability for large-scale population 206 

screening (Supplementary Table 2). 207 

 208 

Attention mechanism and multimodal integration  209 

With extracted single-modal and cross-modal features, we compare reported machine 210 

learning (ML) models used for mental disorders diagnosis41-43, including Support 211 

Vector Machine with Polynomial Kernel (SVM-Poly) and Radial Basis Function 212 

(SVM-RBF) Kernel, Random Forest (RF), and Gradient-Boosting Decision Tree 213 

(GBDT) with GAME, to evaluate the prediction accuracy for 12 mental conditions and 214 

robustness of GAME. The assessment criteria for these models are predicated on 215 

accuracy and weighted F1-Score, bolstered by 10-fold stratified cross-validation 216 

methodology instead of the random split to evaluate the model’s performance. GAME 217 

averagely enhances the accuracy of 3.31% - 76.24% (SVM-RBF), 3.31% - 76.55% 218 

(SVM-Poly), 3.31% - 15.49% (RF), and 3.93% - 17.98% (GBDT) in comparison to the 219 

bracket’s baseline models (Table 1). In terms of model robustness, GAME enhances 220 

the weighted F1-score of the SVM-RBF, SVM-Poly, RF, and GBDT models by 5.07% 221 

- 83.31%, 6.57% - 83.94%, 6.34% - 23.78%, and 6.08% - 22.87%, respectively. The 222 

wide-ranging improvements indicates the efficacy of GAME in mental disorders 223 

screening. 224 

 225 

Table 1 | Models evaluation and comparison for 12 different prediction tasks 226 

Ground truth 
Evaluation 

metric 

SVM-
RBF 

SVM-
Poly 

RF GBDT GAME 

Overall mental 
health status 

Accuracy 

70.15% 

(84.30%, 
49.17%) 

64.99% 

(83.06%, 
30.68%) 

83.08% 

(84.40%, 
81.61%) 

82.23% 

(83.68%, 
80.99%) 

89.26% 

(92.78%, 
87.63%) 

F1-Score 

69.78% 

(79.47%, 
52.87% 

64.70% 

(79.49%, 
31.32%) 

76.82% 

(79.21%, 
75.37%) 

76.86% 

(79.09%, 
74.84%) 

87.49% 

(91.92%, 
85.42%) 

Depression 

Accuracy 

60.98% 

(74.38%, 
27.38%) 

59.38% 

(74.38%, 
31.50%) 

72.86% 

(73.45%, 
71.59%) 

71.30% 

(73.14%, 
69.94%) 

80.16% 

(82.47%,
78.13%) 

F1-Score 

56.87% 

(66.04%, 
12.49%) 

55.29% 

(66.97%, 
16.68%) 

63.35% 

(65.12%, 
61.89%) 

64.19% 

(66.32%, 
61.61%) 

76.80% 
(79.15%, 
74.00%) 



Interpersonal 
sensitivity 

Accuracy 

70.29% 

(80.99%, 
56.42%) 

66.16% 

(80.37%, 
41.31%) 

80.15% 

(80.58%, 
79.03%) 

79.07% 

(80.27%, 
78.41%) 

85.85% 
(88.66%,
83.33%) 

F1-Score 

68.56% 

(75.28%, 
60.59%) 

64.68% 

(74.86%, 
42.94%) 

72.59% 

(74.26%, 
71.63%) 

72.88% 

(74.43%, 
71.12%) 

82.76%  

(86.72%, 
79.37%) 

Anxiety 

Accuracy 

57.04% 

(70.46%, 
31.20%) 

54.08% 

(70.56%, 
30.89%) 

68.38% 

(68.91%, 
66.84%) 

66.44% 

(67.98%, 
64.78%) 

77.58% 
(80.21%, 
75.26%) 

F1-Score 

52.01% 

(61.63%, 
15.53%) 

49.38% 

(62.42%, 
14.89%) 

58.21% 

(61.40%, 
56.47%) 

59.49% 

(61.81%, 
56.71%) 

74.83% 
(79.18%, 
72.08%) 

Obsessive-
compulsive 
tendencies 

Accuracy 

53.67% 

(63.95%, 
38.22%) 

51.68% 

(62.60%, 
37.91%) 

60.87% 

(62.71%, 
57.65%) 

59.25% 

(61.68%, 
55.90%) 

73.04% 

(76.04%, 
70.10%) 

F1-Score 

49.44% 

(58.00%, 
21.87%) 

46.41% 

(55.40%, 
21.21%) 

52.50% 

(56.97%, 
48.60%) 

54.89% 

(57.14%, 
51.63%) 

71.32% 

(75.17%, 
67.85%) 

Paranoid 
ideation 

Accuracy 

72.17% 

(82.95%, 
46.48%) 

64.69% 

(82.96%, 
31.20%) 

82.58% 

(83.06%, 
81.91%) 

81.38% 

(82.33%, 
80.57%) 

87.08% 

(88.66%, 
85.42%) 

F1-Score 

70.13% 

(78.28%, 
49.79%) 

63.74% 

(75.82%, 
32.21%) 

75.71% 

(76.59%, 
75.18%) 

75.74% 

(76.85%, 
74.48) 

83.59% 

(86.92%, 
80.33%) 

Hostility 

Accuracy 

70.95% 

(82.74%, 
51.13%) 

64.81% 

(82.13%, 
28.00%) 

81.47% 

(81.92%, 
80.37%) 

80.41% 

(81.20%, 
79.34%) 

86.78% 

(88.54%, 
84.38%) 

F1-Score 

69.21% 

(77.25%, 
55.57%) 

63.66% 

(76.93%, 
26.59%) 

74.24% 

(75.82%, 
73.37%) 

74.50% 

(75.90%, 
72.78%) 

83.54% 

(86.78%, 
78.88%) 

Academic 
stress 

Accuracy 

57.10% 

(64.88%, 
38.12%) 

54.67% 

(64.57%, 
37.91%) 

61.11% 

(63.64%, 
58.69%) 

59.53% 

(61.99%, 
56.20%) 

74.18% 

(81.25%, 
69.07%) 

F1-Score 

49.52% 

(57.32%, 
21.58%) 

47.82% 

(56.60%, 
21.15%) 

53.02% 

(56.13%, 
49.27%) 

54.98% 

(56.90%, 
50.19%) 

73.06% 

(80.46%, 
67.48%) 

Maladaptation 

Accuracy 

68.16% 

(86.36%, 
13.84%) 

62.79% 

(86.78%, 
13.53%) 

86.30% 

(86.78%, 
85.22%) 

84.83% 

(85.33%, 
83.99%) 

90.08% 

(91.67%, 
89.58%) 

F1-Score 

67.17% 

(82.58%, 
4.33%) 

62.77% 

(80.64%, 
3.71%) 

80.67% 

(81.31%, 
79.98%) 

80.32% 

(80.92%, 
79.83%) 

87.65% 

(89.77%, 
86.16%) 

Emotional 
disturbance 

Accuracy 
55.67% 

(70.35%, 
53.06% 

(68.91%, 
68.74% 

(70.56%, 
66.61% 

(69.11%, 
77.17% 

(80.41%, 



31.61%) 31.30%) 67.56%) 63.85%) 72.16%) 

F1-Score 

50.56% 

(62.67%, 
15.88%) 

48.23% 

(62.51%, 
15.23%) 

59.22% 

(62.43%, 
56.09%) 

59.70% 

(62.36%, 
56.34%) 

73.00% 

(77.92%, 
67.01%) 

Psychological 
imbalance 

Accuracy 

75.15% 

(89.46%, 
51.44%) 

70.49% 

(89.46%, 
26.96%) 

89.25% 

(89.46%, 
88.22%) 

88.25% 

(88.84%, 
86.88%) 

92.77% 

(94.79%,
91.75%) 

F1-Score 

76.19% 

(85.99%, 
60.09%) 

71.65% 

(84.49%, 
31.66%) 

84.44% 

(84.57%, 
84.13%) 

84.43% 

(84.98%, 
83.30%) 

91.06% 

(94.38%, 
89.18%) 

Suicidal 
tendency 

Accuracy 

68.45% 

(80.06%, 
46.77%) 

69.46% 

(79.96%, 
50.91%) 

79.53% 

(79.96%, 
78.20%) 

78.20% 

(79.34%, 
76.24%) 

85.43% 

(88.66%, 
83.51%) 

F1-Score 

65.71% 

(73.90%, 
46.34%) 

66.44% 

(72.58%, 
51.30%) 

71.27% 

(71.81%, 
70.85%) 

71.70% 

(73.48%, 
70.20%) 

82.20% 

(86.72%, 
78.27%) 

The outcomes of ML algorithms are the average values of single-modal features and cross-modal 227 

features, while the outputs of GAME are the average values assessed by the 10-fold stratified 228 

cross-validation method. Data in red denotes the highest value in the row, while data in blue 229 

denotes the row's next-highest value. The maximum and minimum values are denoted by the two-230 

tuple results in parentheses.  231 

 232 

Specially, we integrate the baseline outcomes of ML algorithms (Fig. 3) to 233 

juxtapose them with the GAME concerning their predictive efficacy across diverse 234 

manifestations of mental disorders. The results shows that GAME enhances accuracy 235 

by 5.8% - 52.78% (Depression), 4.86% - 44.54% (Interpersonal sensitivity), 7.02% - 236 

46.70% (Anxiety), 9.09% - 35.13% (Obsession-compulsive tendencies), 4.03% - 55.89% 237 

(Paranoid ideation), 4.03% - 58.78% (Hostility), 9.30% - 36.27% (Academic stress), 238 

3.93% - 76.55% (Maladaptation), 6.61% - 45.87% (Emotional disturbance), 3.31% - 239 

65.81% (Psychological imbalance), 5.37% - 38.66% (Suicidal tendency), and 4.86% - 240 

58.58% (Overall mental health status), while the weighted F1-Score of GAME is 241 

boosted by 10.92% - 64.31% (Depression), 7.49% - 39.82% (Interpersonal sen sitivity), 242 

13.68% - 59.94% (Anxiety), 18.53% - 50.11% (Obsessive-compulsive tendencies), 243 

7.95% - 51.39% (Paranoid ideation), 6.29% - 56.95% (Hostility), 19.12% - 51.91% 244 

(Academic stress), 5.07% - 83.94% (Maladaptation), 11.75% - 57.77% (Emotional 245 

disturbance), 6.57% - 59.40% (Psychological imbalance), 10.54% - 35.86% (Suicidal 246 

tendency), and 8.28% - 56.17% (Overall mental health status), respectively. 247 

Furthermore, we employ the metrics of weighted precision, weighted recall, and the 248 

normalized confusion matrix to rigorously evaluate the performance of GAME across 249 

several classification tasks (Supplementary Fig. 10-12). GAME outperforms ML 250 

methods in both binary and multiple classification indicated by various metrics.  251 



 252 

Figure 3. Evaluation results of comparison between GAME and ML algorithms in various 253 

mental disorders. a, the results assessed by the accuracy and weighted F1-score in order to evaluate 254 

the performance of GAME and ML algorithms work in predicting various types of mental disorders, 255 

while the values of ML algorithms are incorporated in accordance with those distinct types of mental 256 

disorders. b, the top three mental conditions predicted by GAME, which are assessed by normalized 257 

confusion matrix in 10-fold stratified cross-validation. 258 

 259 

Comorbidity among various mental disorders 260 

We use correlation analysis to evaluate the comorbidities and relevancy levels 261 

among different mental disorders in adolescents (Fig. 4a). The findings indicate that: 262 

(1) A significant comorbidity exists between depression and anxiety in young 263 

individuals; (2) Adolescents with anxiety exhibit an elevated susceptibility to emotional 264 

disturbances; (3) Adolescents who suffer from depression and anxiety tend to 265 

experience heightened levels of academic stress; (4) Adolescents with interpersonal 266 

sensitivity disorder manifest an increased vulnerability to emotional disturbance, 267 

anxiety, depression, and academic stress, where anxiety and depression are more 268 

prevalent; (5) Teenagers with paranoid ideation are more susceptible to anxiety, 269 

obsessive-compulsive tendencies, and emotional disturbance; (6) Hostility and 270 

maladaptation are associated with higher levels of academic stress and psychological 271 

imbalance. Also, a correlation between hostility and anxiety is discernible. (7) Within 272 

our cohort displaying psychological imbalances, we note a high occurrence of 273 

emotional disturbance, followed by academic stress and obsessive-compulsive 274 

tendencies. (8) Suicidal tendencies in adolescents may be influenced more easily by 275 

depression, anxiety, academic stress, and emotional disturbance. (Detail analysis is 276 

shown in Supplementary Results). Co-morbidities or correlations among different 277 



mental disorders aligns with the findings presented in existing published literature and 278 

clinical reports, thus reinforcing the validity of our data-driven approaches in reaching 279 

concordant conclusions with clinical evidence. 280 

In addition, we observe novel comorbidities via the prediction ability of GAME 281 

(Fig. 4b). The potential comorbidities are inferred from GAME prediction but are not 282 

revealed by correlation analysis, for example: (1) maladaptation and paranoid ideation 283 

are closely linked to psychological imbalance; (2) there is a comorbidity between 284 

paranoid ideation and hostility as well as maladaptation; (3) there is a comorbidity 285 

between suicidal tendency with interpersonal sensitivity and paranoid ideation; (4) 286 

emotional disturbance has a comorbidity with interpersonal sensitivity. (Further details 287 

in the Supplementary Results). A quantitative measure of the comorbidity between 288 

different mental disorders and complex interactions can be estimated with our method. 289 

The attention mechanism in this study employs the dual relationship in calculating the 290 

feature distance, which can be extended to multiple feature similarities when more data 291 

points are available later. 292 

 293 

 294 

Figure 4. Comorbidities among 11 different mental disorders in adolescents. a, the heat map 295 

reports the comorbidity association through data statistics. The value of color bar indicates the 296 

correlation ratio, which are calculated by the number of samples who are simultaneously suffering 297 

from two different mental disorders. b, the heat map shows the correlation of GAME predictions. 298 

The score of color bars is calculated based on the accuracy obtained from GAME with various 299 

model parameters trained by different mental disorders data, with higher accuracy indicating greater 300 

resemblance between the two mental disorder. Darker blue indicates poorer correlation while deeper 301 

red indicates higher correlation. 302 

 303 

Modality ablation experiments 304 

Each modal feature can boost the GAME’s accuracy in predicting various mental 305 

disorder (Fig. 5a). The impact of different modal features on the performance of GAME 306 

varies, with some exerting more pronounced effects than others, which facilitates 307 

GAME's ability to explain the specific contributions of each modality to the prediction 308 

of particular mental disorders. The modal features can be ranked based on their 309 

contribution to the model's accuracy, with the following order from highest to lowest: 310 

Wav2vec, Expression, RoBERTa, Expression nuance, Relation graph, Eye movement, 311 



PERT, Attention, Physiological signs, and MFCC. The absence of specific modal 312 

features can result in a considerable decline in the prediction accuracy of GAME when 313 

predicting specific mental disorders, such as Attention features and obsessive-314 

compulsive tendencies, Wav2vec features and emotional disturbance, expression 315 

features and academic stress. In terms of weighted F1-score (Fig. 5b), the average 316 

contribution of modal features to the robustness and stability of GAME is listed in 317 

descending order: Attention, RoBERTa, Expression, PERT, Eye movement, Wav2vec, 318 

Expression nuance, Physiological signs, Relation graph, and MFCC. Analogously, the 319 

removal of certain modal features can greatly diminish the robustness of GAME; for 320 

example, Expressions, Physiological signs, Wav2vec, Roberta, and Attention facilitate 321 

GAME’s stability in predicting anxiety. In addition, Attention and Wav2vec help 322 

GAME improve accuracy and robustness in the tasks of screening obsessive-323 

compulsive tendencies and emotional disturbance. The results explainably demonstrate 324 

the hierarchical importance of various factors in mental disorder prediction.  325 

 326 

 327 

Figure 5. Ablation and contribution ratio for different modal features. a, the heat map shows 328 

the impact of modal feature elimination on prediction accuracy of GAME. The score of color bar 329 

indicates the percentage of accuracy decrease and the symbol ‘-’ represents decline. b, the influence 330 

on weighted F1-Score after removing certain modal feature of GAME. Deeper red denotes better 331 

correlation, while darker blue suggests lower correlation. c, the line chart describes the contribution 332 

ratio of different features in various GAME prediction tasks, which provides the interpretation of 333 

the reasoning why GAME provides this screening decision.  334 

 335 

Modal feature contributions 336 



GAME indicates the dynamic contribution of each modal feature throughout the 337 

multimodal feature fusion to tailor the needs of different scenarios, underscoring the 338 

adaptability of modal features in predicting different mental disorders (Fig. 5c). This 339 

analysis establishes associations between specific mental disorders and their most 340 

significant diagnostic features, including Attention and Depression; Physiological signs 341 

and Interpersonal sensitivity; MFCC (i.e., voice recording) and Anxiety; PERT (i.e., 342 

textual transcripts) and Obsession-compulsive tendencies; Physiological signs and 343 

Paranoid ideation; RoBERTa (i.e., textual transcripts) and Hostility; RoBERTa and 344 

Academic stress; Eye movement and Maladaptation; Wav2vec (i.e., voice recording) 345 

and Emotional disturbance; Physiological signs and Psychological imbalance; 346 

RoBERTa and Suicidal tendency; as well as Eye movement and Overall mental health 347 

status. These findings explain the deterministic features utilized by GAME to make 348 

predictions for certain mental disorders, which are consistent with the screening 349 

methods used in previous work44,45 (Detailed analysis in Supplementary Results). In 350 

resource- or time-limiting scenarios, the conclusion about important feature provides 351 

guidance for choosing the most valuable modality for certain mental disorder screening, 352 

thus optimizing the efficiency of mental disorder. 353 

 354 

Discussion 355 

CAS models for biomedical applications have experienced rapid development46-48 and 356 

multimodal learning increasingly gaining traction in the domain of disease screening 357 

and diagnosis49,50. Nevertheless, the absence of screening hardware slows down the 358 

proliferation of CAS within the psychological sphere, subsequently limits the creation 359 

of a generalized and interpretable multimodal CAS for screening adolescent mental 360 

disorders. Addressing this, we design and create an interactive robot with a well-361 

designed Android APP to screen adolescent disorders unobtrusively across a broad 362 

population. Then we build the MAPS database and develop a generalized multimodal 363 

model, named as GAME, which showcases commendable accuracy and robustness in 364 

predicting adolescent mental ailments. The integration of multiple feedback features is 365 

a promising predictor of psychological disorders in adolescents. 366 

The multimodal feature fusion and the incorporation of attention mechanism boost 367 

the universality of GAME in the task of screening diverse mental disorders, where 368 

previous deep learning models are developed specifically for certain mental 369 

disorders51,52. GAME evaluates adolescent’s mental health conditions with an accuracy 370 

of 73.34% – 92.77%, a F1-Score of 71.32% – 91.06%, a specificity of 73.24% – 93.14% 371 

and a sensitivity of 73.04% – 92.77%. Since other psychometric tools were reported to 372 

have ~70% specificity 53,54, GAME is a more effective and powerful tool for screening 373 

adolescent mental disorders. Modality ablation shows that each modal feature provides 374 

a positive contribution in predicting performance. Notably, the absence of Attention 375 

leads to a ~10% reduction in model performance when predicting anxiety and 376 

obsession-compulsive tendencies. In a nutshell, GAME is superior to conventional ML 377 

algorithms and screening tools in prediction performance due to its thorough feature 378 

extraction and cross-modal information mining. 379 

Comorbidity is not a rarity55, emphasizing the importance of comprehensive 380 



analyses for a detailed psychological profiling of adolescents. Adolescents with mental 381 

disorders require comorbidity analysis to create a precise psychological portrait. 382 

Comorbidities hold profound clinical implications for the diagnosis of mental disorders, 383 

the prescription of appropriate treatments, and the long-term management56. However, 384 

to the best of our knowledge, few researchers utilize multimodal algorithms to mine 385 

comorbidities among adolescent psychological disorders. GAME can quantify the 386 

relevancy magnitude between different mental disorders in adolescents, which 387 

improves the accuracy of the mental disorders screening and provides insights for 388 

development of adolescent psychological theories through data-driven perspective. For 389 

example, GAME predicts a comorbidity between emotional disturbance and 390 

interpersonal sensitivity, shown in empirical research57, which indicates that unstable 391 

social relationships cause emotional disorders. GAME as a digital assistant to prompt 392 

the psychiatrist to give priority to the interpersonal sensitivity rather than emotional 393 

disturbance. The GAME can be extended to discover novel comorbidities if more modal 394 

features and mental disorder types are provided.  395 

Interpretability is crucial for the development and application of CAS systems in 396 

clinical settings. Unexplained or opaque models (known as "black boxes") make it 397 

difficult to understand the logic reasoning of clinical decision58. By dissecting the 398 

trained GAME’s parameters, we explain how GAME makes predictions through the 399 

contribution ratio for each modal feature during diverse prediction tasks, which 400 

demystifies the intricate interplay between mental disorders and modal features through 401 

modality ablation. For example, GAME suggests that Physiological signs is more 402 

important than other modal features in predicting interpersonal sensitivity, which is 403 

consistent with the report that interpersonal sensitivity is associated with higher systolic 404 

blood pressure59. GAME guides future research directions through comorbidity 405 

relationships and correlation between features and mental disorders. For instance, 406 

GAME predicts that maladjustment and paranoid ideation are possibly linked to 407 

psychological imbalance. However, there is currently no relevant work to show the 408 

comorbidity between them, and future work is required to fill this gap. 409 

This study is not without its limitations. First, even that GAME has been validated, 410 

the size of the MAPS dataset is modest, which restricts the performance of data-driven 411 

models and necessitates the collection of larger samples to enable GAME to learn subtle 412 

features about adolescent mental disorders. Adolescents' mental disorders are closely 413 

related to their living environment60. In the future, we can enlarge the MAPS dataset to 414 

include more cities and countries with diverse economical stages, geographical 415 

environments, and social culture. Second, the materials of emotional stimuli may not 416 

be abundant enough. To improve the reliability of audiovisual stimuli61,62, emotionally 417 

elicited film clips should be included. Third, public multimodal datasets can be used to 418 

train GAME for widespread applications. However, multimodal datasets for screening 419 

of adolescent mental disorder are not available. Transfer learning with a pre-trained 420 

model can be adopted to extra psychometric applications instead of screening. Fourth, 421 

GAME can be extended to tackle the issue of modalities absence, which has not been 422 

addressed in computational psychology. Real-world datasets often contain inadequate 423 

modality data for a variety of reasons, like data privacy, failed acquisitions, data 424 



corruption, and costly testing63. The missing modality problem has been studied in other 425 

diseases’ diagnosis64. 426 

In summary, this study elucidates that an economically viable (< $400), portable, 427 

interactive, expansible robot with vivid emotional stimulation materials can effectively 428 

facilitate screening and diagnosis of adolescent mental health disorders. GAME, 429 

underpinned by robust theoretical frameworks, has the advantages of high accuracy, 430 

strong stability, and interpretability, which presents a promising avenue in the realm of 431 

mental disorder screening and unveil the relationship among various mental disorders 432 

as well as the correlation between mental disorders and modalities from a model-driven 433 

perspective. 434 

 435 

Methods 436 

Approval for the study was granted by the Office of Research Ethics at Tsinghua 437 

University, Shenzhen International Graduate School under Protocol No. 41 in 2021. 438 

 439 

Design of Android application 440 

The Android application's architecture encompasses data transfer and database 441 

management, built upon a foundation of technological components including: Spring 442 

Boost 2.0, Spring Cloud, MySQL, VUE, Docker, Remote Dictionary Server (REDIS), 443 

and EQUEUE technologies, etc. The development process consists of two distinct 444 

phases: protocol design and code implementation. Firstly, we collaborate and consult 445 

with professional psychologists, psychological counselors from middle school, and 446 

representative parents to identify the requirements and appropriate tools for adolescent 447 

mental disorders screening. Subsequently, we formulate the interaction scheme and 448 

functional architecture of the application. Once we validate the engineering feasibility 449 

of the scheme and structure, we process with designing the user interface (UI) and user 450 

experience (UE). We follow the code development order of application (APP) client, 451 

application programming interface (API) server, and background database management 452 

system. In detail, we use Java and the front-end framework VUE for development of 453 

the application client, employ Restful API and Domain-driven Design (DDD) 454 

technologies for application API server development, and utilize REDIS and MySQL 455 

for background database management systems. Upon completing the application 456 

development, we conduct application program testing, including App content testing, 457 

App performance testing, App function testing, App visual testing, debugging, and 458 

repairing bugs. Finally, we deploy the application onto the interactive robot for on-site 459 

screening (Supplementary Fig. 1–9). The screening platform we develop provides 460 

objective and involuntary screening appropriate for repetitive screening, addressing the 461 

bias associated with questionnaire-based screening. Moreover, the APP's content 462 

facilitates personalized further development, allowing researchers to tailor different 463 

stimulus materials to meet the various demands of psychological screening and 464 

diagnosis. 465 

 466 

MAPS Dataset Collection 467 

Our adolescent multimodal mental health screening dataset contains facial, textual, 468 



acoustic, and physiological data, four data modalities, which are collected from 469 

multiple middle schools in Guangdong Province with 3,783 volunteers ranging from 12 470 

to 15 years old and filtered to 968 after exclusion (Supplementary Methods). Each data 471 

is collected by a humanoid robot. The main components of this robot include a touch 472 

screen, a camera, a speaker, and a recording device. The touch screen displays the test 473 

content and allows interaction with the test taker. The camera records video of the 474 

volunteers' faces, and the recording device records the volunteers’ voices during the test. 475 

The recorded data is transferred to a configured personal computer for storage. An 476 

Android app installed in the robot system completes the entire testing and data 477 

collection process (Supplementary Methods). Personal information, such as gender, 478 

age, class number, and student ID, is required prior to data collection. The volunteer 479 

will enter all of the above information into the robot via the touch screen. The recorded 480 

video of the acquisition process and classroom environment is provided in the 481 

Supplementary Videos and Supplementary Fig. 13. 482 

 To minimize the physical and psychological discomfort experienced by adolescent 483 

participants during screening caused by a wearable device, we use a high-resolution 484 

camera installed into the robot to collect video data and calculate physiological signs 485 

by the rPPG algorithm integrated in the back-end server. The rPPG65 algorithm, coined 486 

as non-contact PPG66,67, is a technique to analyze the face video to extract physiological 487 

indicators, including heart rate, heart rate variability, changes in blood pressure, and 488 

respiration rate. Stress and relaxation levels can be calculated using a DL algorithm and 489 

the arousal-valence emotion model68,69 based on physiological indicators. Eventually, 490 

we obtain six physiological metrics and save them in the database. The volunteer may 491 

move significantly during the screening process, potentially causing the rPPG 492 

algorithm to fail at deriving certain physiological indicators. Only the key and clear 493 

frames in the videos identified by the rPPG algorithm can be used to acquire the 494 

physiological indicators, and we save the pairs of face images and physiological signs 495 

to maintain a consistent correspondence between them. 496 

 497 

MMHI-60 498 

The MMHI-60 is adapted from the Symptom Checklist-90 (SCL-90)70, which was 499 

designed through a two-year follow-up survey on the mental problems of middle school 500 

students in more than 100 schools across China and has been successfully applied to 501 

the mental disorders screening for Chinese middle school students71. The MMHI-60 502 

comprises 60 questions to measure relevant symptoms of 10 distinct mental problems 503 

(including depression, interpersonal sensitivity, anxiety, obsessive-compulsive 504 

tendencies, paranoid ideation, hostility, academic stress, maladaptation, emotional 505 

disturbance, and psychological imbalance). For each question, the respondent assigns a 506 

score ranging from 1 to 5, depending on whether they have recently undergone a 507 

specific type of symptom or behavior, which represents none, mild, moderate, heavy, 508 

and serious, respectively72. The MMHI-60 uses a 5-point Likert scale, where a score of 509 

2-2.99 indicates the presence of mild problematic symptoms; 3-3.99 suggests moderate 510 

symptoms; 4-4.99 indicates the presence of severe symptoms; and a rating of 5 denotes 511 

severe psychological symptoms. Final score is the average score of its corresponding 512 



questions, allowing the participants to be identified as having the potential for 513 

symptoms of a relative mental disorder. The mental health issue is recognized when the 514 

average score of the subscale is equal to or higher than 2, which will be regarded as 515 

positive. The ground truth of overall mental health status is obtained by combining all 516 

the scores from subscales (i.e., the higher the score, the worse the overall mental health 517 

status), and the ground truth of suicidal tendency is obtained by both the MMHI-60 and 518 

diagnostic advice from the psychiatrist. The question list of the MMHI-60 is presented 519 

in the Supplementary Methods. 520 

 521 

Theoretical Supporting framework 522 

This work relies on Hyper-Emotion theory, which supports GAME a theoretical 523 

foundation for the plausibility of predicting psychological conditions based on the 524 

magnitude of emotional responses to external stimuli within adolescents. It posits that 525 

mental diseases stem from a cognitive appraisal process that undergoes a series of 526 

unconscious transitions culminating in the manifestation of fundamental emotions, such 527 

as happiness or anger. The Hyper-Emotion theory contains five principles: (1) The 528 

principle of unconscious transitions to fundamental emotions. People develop a series 529 

of unconsciously shifts from a physiological sensation or cognitive assessment to a 530 

fundamental emotion that are contextually appropriates to the circumstance but aberrant 531 

in its response intensity. Such transitions lead to the start of a psychological illness, but 532 

they persist during the illness38. (2) The principle of no voluntary control. Individuals 533 

are unable to control their basic emotions during straightforward cognitive assessments. 534 

(3) The ontological principle. The ontogeny of social mammals serves as the foundation 535 

for the development of basic emotions, as the source of psychological diseases. (4) The 536 

principle of vulnerability. The susceptibility of individuals to psychiatric diseases varies 537 

according to intrinsically established conditions and adverse circumstances. (5) The 538 

principle of inferential consequences. People pay more attention to an abnormal basic 539 

emotion, engage in introspection to identify their causes. They become skilled at 540 

making inferences about the topic they are pondering, and their inferences can 541 

perpetuate and exacerbate the mental illness. 542 

In brief, the Hyper-Emotion theory endorses the notion that individuals 543 

occasionally perform cognitive assessments, which they may consciously recognize, 544 

resulting in an unconscious transition towards a fundamental emotion of heightened 545 

intensity. The episode may be brief or it may intensify into a full-fledged psychological 546 

disease, contingent upon individual constitutional factors and environmental influences. 547 

The theoretical foundation of this study aims to allow adolescents to express their 548 

unconscious emotional perturbations to emotional stimuli from the interactive robot. 549 

 550 

Data Preprocessing 551 

To ensure that the feature vector dimensions entered into GAME are consistent, we 552 

preprocess the recording data as follows to ensure that the length of the recordings is 553 

the same for all subjects. We set the valid recording duration to 10 seconds as the 554 

average length. If the recording length is longer than the average length, the surplus 555 

frames are truncated, while recordings shorter than the average are zero-padded. 556 



Notably, for other data modalities (i.e., inconsistent length of text, face video, and 557 

physiological index), we do not require a preprocessing step due to the inherent 558 

capabilities of the feature extractor in resolving length inconsistencies. 559 

 560 

Single-modal Feature Extraction 561 

The purpose of feature extraction is to retain decent separability (e.g., help GAME 562 

classify data accurately) and reduce computing costs while mapping the sample from a 563 

high-dimensional feature space to a low-dimensional feature space. The followings are 564 

the algorithms used to extract single-modal features or cross-modal features. 565 

(1) Feature extraction for audio recordings 566 

Mel-scale Frequency Cepstral Coefficients (MFCC)73 is used as the feature of 567 

acoustic recordings that is commonly used in audio-related tasks like speech 568 

recognition and speaker recognition. An audio is subjected to a rapid Fourier transform, 569 

Mel filter bank, logarithmic operation, discrete offline transform, and dynamic feature 570 

extraction in order to acquire the MFCC feature. We obtain the MFCC feature extracted 571 

by speech-features-module (https://github.com/jameslyons/python_speech_features), 572 

which is a python package for audio signal processing and audio feature extraction.  573 

The calculation of MFCC can be divided into the following steps: first, frame the 574 

signal into brief frames. Under the premise that the audio signal doesn't vary 575 

substantially across small time scales, we confine the signal length into 25 ms, which 576 

is consistent with the acquisition frequency of 16 Khz, corresponding to 0.025 ∗577 16000 = 400 frames. We set frame step as 10 ms (160 samples), which allows some 578 

overlap between steps. The first 400 sample frame starts at sample 0, the next 400 579 

sample frame starts at sample 160 etc. until the end of the speech file is reached. The 580 

second step is to calculate the power spectrum of each frame. One set of 12 MFCC 581 

coefficients is retrieved for each frame. Then, the Discrete Fourier Transform (DST) 582 

for each frame will be determined using the following formula: 583 𝑆𝑖(𝑘) = ∑ 𝑠𝑖(𝑛)ℎ(𝑛)𝑒−𝑗2𝜋𝑘𝑛/𝑁𝑁𝑛=1   1 ≤ 𝑘 ≤ 𝐾, 584 

where h(n) means the analysis window with N samples (i.e., hamming window) and 585 

K is the length of the DFT. Additionally, s(n) means time domain signal, whose i 586 

ranges over the number of frames. The 𝑆𝑖(k)  and 𝑃𝑖(k)  implies the time-domain 587 

frame and the power spectrum of frame i, respectively. Then, the periodogram-based 588 

power spectral estimate for the speech frame 𝑠𝑖(𝑛) is given below: 589 𝑃𝑖(𝑘) = 1𝑁 |𝑆𝑖(𝑘)|2. 590 

We square the output after taking the complex Fourier transform's absolute value. The 591 

next step is to calculate the Mel-spaced filter bank, take the log for each of the 26 output 592 

from previous step, and finally take DCT of the 26 log filter bank items to obtain 26 593 

cepstral coefficients. Consistent with traditional automatic speech recognition task 594 

settings, we keep the lower 13 of the 26 coefficients as the resulting features. 595 

In addition to the conventional speech recognition algorithm for feature extraction , 596 

we also employ the self-supervised pre-training DL model wav2vec 2.074 to embed the 597 

audio. In contrast to other models, wav2vec 2.0 performs the best in many standard 598 

voice tasks75. Thus, we employ wav2vec to extract features from audio recordings of 599 



adolescents. Wav2vec2.0 encodes speech audio using a multi-layer convolution neural 600 

network and subsequently masks portions of the latent speech representations. The 601 

model is trained using a contrastive manner in which the real latent is differentiated 602 

from fake latent. The latent representations are supplied to a Transformer76 network to 603 

produce contextualized representations. 604 

(2) Feature extraction for textual transcripts 605 

For text data, we use Robustly optimized BERT approach (RoBERTa)77 and  606 

PERT78 to extract the textual feature. These two models yield distinct features due to 607 

differences in architecture and training data from a Chinese corpus. Consequently, we 608 

harness the two models’ output as the inputs to improve the robustness and reliability 609 

of GAME in predicting adolescents’ mental disorders. RoBERTa and PERT are being 610 

advanced iterations of BERT79, exhibiting capability in numerous tasks including text 611 

classification, machine reading comprehension, and text prediction. Based on pre-612 

trained models, we extract features directly without fine-tuning. RoBERTa is an 613 

improved BERT model that can match or exceed the performance of all post-BERT 614 

methods and it offers a comprehensive evaluation concerning the impact of hyper-615 

parameter tuning and change of training set size77. PERT is a permuted language model 616 

to recover the word orders from a disordered sentence, and the objective of PERT is to 617 

predict the position of the original word, which outperforms other BERT variants on a 618 

few tasks78. The amalgamation of PERT and RoBERTa serves to extract the features of 619 

text data from different perspectives.  620 

(3) Feature extraction for facial images 621 

The features of the face images are extracted using MediaPipe FaceMesh80. This 622 

powerful tool, even when presented with single images devoid of depth information, is 623 

capable of furnishing a 3D representation of the human face, comprising 468 points 624 

characterized by 3D coordinates. We use the pre-trained model to generate the features 625 

from each image in the sequence (Supplementary Fig. 14), in which the face is resized 626 

to 256 × 256. The initial processing step entails the application of a facial detector to 627 

delineate a rectangular region encompassing the face, inclusive of vital landmarks such 628 

as eye centers and nose tips. Then the face rectangle is cropped, resized, and fed to a 629 

deep neural network to generate a vector of 3D landmark coordinates. 630 

Furthermore, we use MediaPipe Iris81 to track the eye movements of the volunteer 631 

(Supplementary Fig. 14). After MediaPipe FaceMesh detects the face area and eye 632 

landmarks, a DL model is trained to mark subtle positions such as iris position, eye 633 

contour, and pupil location. The position of each eye is represented by a pair of 634 

coordinates. Eye movement can be utilized to infer users' behavior and cognitive status 635 

in human-computer interaction82, since pupil response is closely related to cognitive 636 

and emotional processes83.  637 

(4) Feature extraction for physiological indicators 638 

Tsfresh84 is a Python package for extracting features from time series data, which 639 

employs a repertoire of 63 methods to obtain features, such as absolute energy, the 640 

highest absolute value, etc. The Tsfresh module processes the time series data in three 641 

stages. The first phase is feature extraction, in which the algorithm characterizes the 642 

time series and generates aggregated time series features using the module of feature 643 



calculators. Each extracted feature vector is weighted according to their respective p-644 

values to determine significance in achieving the desired outcome during the feature 645 

significance testing phase. The concluding phase involves a multiple test procedure, 646 

which determines what features need to be retained85. The detailed implementation of 647 

feature extraction is described in Supplementary Methods. 648 

 649 

Z-Score Normalization 650 

After extracting the modal features from the individual modality data, we transform 651 

them using Z-score normalization to convert the feature vectors into a consistent spatial 652 

dimension. The following formula is used to determine the Z-score in statistics: 653 Z = (x − μ)/σ  654 

where, Z means Z-score, x is the original value being evaluated, 𝜇 denotes the mean 655 

value of all data and σ implies the standard deviation. Cross-modal feature extraction 656 

and multimodal feature fusion are performed after Z-score normalization. 657 

 658 

Cross-modal Feature Extraction 659 

From eight single-modal features standardized by Z-score, we extract cross-modal 660 

features: Relation graph and Attention, in the pursuit of advancing the capabilities of 661 

the GAME. Cross-modal features mine the relationship between various modal features, 662 

assisting GAME to use the correlation among modal features to predict a variety of 663 

mental disorders. The Relation graph is conceptualized as a weighted undirected graph, 664 

wherein each node represents an individual single-modal feature. The weight assigned 665 

to each edge in this graph is determined by the proximity between the respective feature 666 

nodes. Since the length of different unimodal features varies, we apply the Dynamic 667 

Time Warping (DTW)86 approach to compare the similarity between two time series of 668 

varying lengths or calculate the distance between them. Consequently, the resulting 669 

relation graph is characterized by a vertex set comprising eight nodes and an edge set 670 

comprising 32 weighted edges, all of which are succinctly encapsulated within an 671 8 × 8 adjacency matrix. 672 

 For the calculation process of DTW, suppose we need to measure the distance 673 

between two example series X = {𝑥1, 𝑥2, … , 𝑥𝑚}  and Y = {𝑦1, 𝑦2, … , 𝑦𝑛} . We set 674 M(𝑋, 𝑌) as the m × n point-by-point distance matrix between sequences X and Y, 675 

where each point (i, j) is distance calculated by 𝑀𝑖,𝑗 = (𝑎𝑖 − 𝑏𝑗)2 after the alignment 676 

between 𝑥𝑖  and 𝑦𝑗  due to length variation. The elements of X  and Y  are mapped 677 

along a warping path P to minimize the distance between them and P is a group of 678 

index pairs that make up a matrix traversal, which is defined as: 679 P = < (𝑒1, 𝑓1), (𝑒2, 𝑓2), … , (𝑒𝑠, 𝑓𝑠) > 680 

In order to avoid the problem of combinatorically explosive (i.e., examining every 681 

possible combination) , the following prerequisites must be satisfied for a warping path 682 

to be valid: (1) Boundary Condition: (𝑒1, 𝑓1) = (1,1)  and (𝑒𝑠, 𝑓𝑠) = (𝑚, 𝑛) , which 683 

guarantees that the warping path starts at the beginning of both series and terminates at 684 

the endpoints of them. (2) Monotonicity condition: 𝑒𝑖 ≤ 𝑒𝑖+1, 0 < 𝑖 ≤ 𝑚  and 𝑓𝑖 ≤685 𝑓𝑖+1, 0 < 𝑖 ≤ 𝑛, which preserves the chronological sequence of points. (3) Continuity 686 



condition:  𝑒𝑖+1 − 𝑒𝑖 ≤ 1, 0 < 𝑖 ≤ 𝑚  and  𝑓𝑖+1 − 𝑓𝑖 ≤ 1, 0 < 𝑖 ≤ 𝑛 , which restricts 687 

the forward transitions to nearby points in next time-stage. We define dist(𝑋𝑥𝑖 , 𝑌𝑦𝑖) be 688 

the distance between elements at point 𝑥𝑖 of sequence 𝑋 and 𝑦𝑖 of sequence 𝑌. As 689 

a consequence, the distance for optimal path P is equal to 690 𝐷𝑃(𝑋𝑥𝑖 , 𝑌𝑦𝑖) = dist(𝑋𝑥𝑖 , 𝑌𝑦𝑖) + min {𝐷𝑃(𝑋𝑥𝑖−1 , 𝑌𝑦𝑖), 𝐷𝑃(𝑋𝑥𝑖 , 𝑌𝑦𝑖−1), 𝐷𝑃(𝑋𝑥𝑖−1 , 𝑌𝑦𝑖−1)}. 691 

If we use Θ to represent the realm of all potential paths and 𝑃∗ is the shortest warping 692 

path. Hence, we can calculate the optimal warping path that 693 𝑃∗ = (𝐷𝑃(𝑋, 𝑌))𝑃∈Θ𝑚𝑖𝑛 .  694 

Let 𝑝𝑖 = 𝑀𝑋𝑒𝑖 ,𝑌𝑓𝑖  be the distance between elements at position 𝑒𝑖 belong to X and 695 𝑓𝑖 of Y. The DTW distance between two series is obtained by the formula: 696 𝐷𝑃∗(𝑋, 𝑌) = ∑ 𝑝𝑖𝑠𝑖=1 . 697 

An exact solution of the best route 𝑃∗ can be made using a dynamic programming 698 

approach. 699 

 With attention mechanism, the model can extract crucial feature, assign each input 700 

component a different weight, and reach more precise judgments. Similarly, we 701 

leverage the DTW method with attention weights, and the detailed process is described 702 

as the following. First, we select one of the single-modal features as the benchmark and 703 

use the DTW technique to determine the distance with the other remaining features. We 704 

use d𝑖 to denote the distance between any two single-modal features, 𝑑𝑖 = 𝐷𝑇𝑊(𝑀),705 0 ≤ i ≤ 7, where M is the feature vector set with eight unimodal features. Second, we 706 

utilize the softmax function convert the distance set D = {𝑑𝑖}, 0 ≤ i ≤ 7 produced in 707 

the first step into a weight set W = {𝑤𝑖}, 0 ≤ i ≤ 7 to satisfy the requirements that 708 ∑ 𝑤𝑖 = 17𝑖=0 . Third, the corresponding feature vector is weighted based on the weight 709 

set obtained in the second stage, and the outcome is then added in bitwise to the 710 

benchmark feature vector. The addition operation is based on the sequence 711 

correspondence in the DTW algorithm, and the dimensionality of the resulting feature 712 

vector is the same as the benchmark. Forth, repeat the same procedures using each of 713 

the eight single-modal features as the reference to generate eight new feature vectors, 714 

and then concatenate them as the attention modal feature. 715 

 716 

Multimodal Feature Fusion and Classification 717 

(1) Task-level feature fusion 718 

Here we use a simple strategy of averaging all feature vectors including text, audio, and 719 

the face landmarks. The average of eight sentence features is used to describe the 720 

overall features of the text modality, the average of five audio features is used to 721 

describe the features of the audio modality, and the average of multiple face landmarks 722 

is used to represent the face’s 3D shape feature. For the iris location in the face image, 723 

we use it directly without any preprocessing before multimodal fusion. 724 

(2) GAME 725 

GAME extracts eight unimodal features from four individual modality data and 726 

creates two novel cross-modal features based on the single-modal features. We then 727 



employ EmbraceNet35 as the backbone network of the multimodal feature fusion 728 

method, and the network structure of GAME is shown in Figure 2. EmbraceNet is a 729 

robust multimodal fusion model allowing for excellent compatibility with any network 730 

structure, which considers correlations between various modalities. Additionally, 731 

GAME can handle missing data. There are two main parts in EmbraceNet: the docking 732 

layers and the embracement layer. Docking layers convert the feature vector of a 733 

modality into a format suitable for integration, where the original feature vector is 734 

multiplied with parameter matrix and added by bias matrix. For example, suppose that 735 

there are m modal features extracted by corresponding network models, the output 736 

vector from the k𝑡ℎ network model will be called x(𝑘), where 1 ≤ k ≤ m. The i𝑡ℎ 737 

component of the input vector for the k𝑡ℎ docking layer is written as  738 𝑧𝑖(𝑘) = 𝑤𝑖(𝑘) ∙ 𝑥(𝑘) + 𝑏𝑖(𝑘), 739 

where 𝑤𝑖(𝑘) and 𝑏𝑖(𝑘) are weight and bias vector that correspond to the k𝑡ℎ docking 740 

layer, respectively. Finally, the output 𝑑(𝑘) of the k𝑡ℎ docking layer is obtained by 741 

applying an activation function 𝑓𝑎 to 𝑧𝑖(𝑘), i.e.,  742 𝑑𝑖(𝑘) = 𝑓𝑎(𝑧𝑖(𝑘)). 743 

All the outputs of the docking layers are vectors with c dimensions, where the 744 

hyper-parameter c (embracement size) can be configured if necessary (32 in GAME). 745 

In the embracement layer, the outputs of the docking layers are fused into a vector 746 

representing all modal information using a probability-based approach as follows. 747 

Consider 𝑟𝑖 = [𝑟𝑖(1), 𝑟𝑖(2), … , 𝑟𝑖(𝑚)]𝑇 , 1 ≤ i ≤ c is a vector obtained from a multinomial 748 

distribution, 𝑟𝑖 ~ multinomial(1, p) , where p = [𝑝1, 𝑝2, … 𝑝𝑚]  and ∑ 𝑝𝑘 = 1𝑚𝑘=1  . 749 

Only one 𝑟𝑖  equals to 1 in accordance with the definition of the multinomial 750 

distribution, and all other values are equal to 0. The vector 𝑟(𝑘) = [𝑟1(𝑘), 𝑟2(𝑘), … 𝑟𝑐(𝑘)]𝑇 751 

is calculated with the output vector from docking layers 𝑑(𝑘) as  752 𝑑′(𝑘) = [𝑑1′(𝑘), 𝑑2′(𝑘), … , 𝑑𝑐′(𝑘)]𝑇 = 𝑟(𝑘)°𝑑(𝑘), 753 

where ° means the Hadamard product, which will multiple the elements in bitwise (i.e., 754 𝑑𝑖′(𝑘) = 𝑟𝑖(𝑘) ∙ 𝑑𝑖(𝑘)). Ultimately, the i𝑡ℎ element of the output vector belonging to the 755 

embracement layer e = [𝑒1, 𝑒2, … , 𝑒𝑐]𝑇 is determined by the following formula: 𝑒𝑖 =756 ∑ 𝑑𝑖′(𝑘)𝑚𝑘=1 . The terminal network uses it as an input vector and outputs a final category 757 

label for the specified classification task. 758 

 759 

Experimental Evaluation Metrics 760 

In order to comprehensively evaluate the performance of GAME on imbalanced 761 

datasets, we implement a stratified k-fold cross-validation approach, where k is set as 762 



10. Accuracy, weighted F1-score, weighted Precision score, weighted Recall score, and 763 

normalized confusion matrix are calculated. The accuracy can be computed by the 764 

formula: 765 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 766 

The F1-score is calculated by Precision score and Recall score. The definitions of the 767 

weighted Precision score and weighted Recall score are listed as the following.  768 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =  𝑇𝑃𝑖𝑇𝑃𝑖  +  𝐹𝑃𝑖 769 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛weighted =  ∑ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖  ×  𝑤𝑖)𝐿𝑖=1 𝐿  770 𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =  𝑇𝑃𝑖𝑇𝑃𝑖  +  𝐹𝑁𝑖 771 

𝑅𝑒𝑐𝑎𝑙𝑙weighted =  ∑ (𝑅𝑒𝑐𝑎𝑙𝑙𝑖  ×  𝑤𝑖)𝐿𝑖=1 𝐿  772 𝑤𝑖 =  𝑆𝑛𝑖𝑇𝑛   773 

where i depicts class index, L is the total class number, TP means True positive, 774 TN is True negative, FP represents False negative, FN is False negative, Sn is 775 

sample number of specific class, and Tn is the total sample number. The weighted 776 

F1-Score can be determined as 777 F1weighted =  2 ×  Precisionweighted  ×  RecallweightedPrecisionweighted +  Recallweighted 778 

Normalized confusion matrix in cross validation is obtained by averaging each fold of 779 

the confusion matrix and then normalizing the output.  780 
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